
INTRODUCTION TO CAUSAL 
INFERENCE AND DIRECTED 

ACYCLIC GRAPHS

EVA-MARIA DIDDEN

JULY 5TH, 2019



OUTLINE

1. CAUSAL INFERENCE

Background

Association versus causation

Key conditions for causal inference

2. DIRECTED ACYCLIC GRAPHS 

Background

Paradoxes

Definitions and illustrations



CAUSAL INFERENCE
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WHY?

TO BE ABLE TO ESTIMATE THE CAUSAL EFFECT OF A VARIABLE (E.G. AN EXPOSURE) ON 

AN OUTCOME IN SPECIFIC STUDY SETTINGS

randomized controlled trial observational cohort study



NOTATION

Y : outcome (here: binary 0/1)

E : observed exposure (here: binary 0/1)

e : hypothetical exposure (here: binary 0/1)

P(Y=1|E=1) : probability of Y =1 in a population exposed to E=1

𝑃 𝑌𝑒=1 = 1 : probability of outcome y=1, would exposure e=1 be chosen

→ 𝑌𝑒=0, 𝑌𝑒=1:  potential/counterfactual outcomes



ASSOCIATION VERSUS CAUSATION (1/2)

E=1E=0

P(𝑌𝑒=0 = 1) P 𝑌𝑒=1 = 1 P(𝑌 = 1|𝐸 = 0) P(𝑌 = 1|𝐸 = 1)

population of interest

Graph shown in different publications by Miguel A. Hernán and James M. Robins, 

Harvard T. H. Chan School of Public Health



ASSOCIATION VERSUS CAUSATION (2/2)

ASSOCIATION: 

P(Y=1|E=1)≠P(Y=1|E=0)  

for two disjoint exposure subgroups 

CAUSATION:

𝑃 𝑌𝑒=1 = 1 ≠ 𝑃 𝑌𝑒=0 = 1

based on a counterfactual view on the entire population

SHARP CAUSAL NULL HYPOTHESIS:

𝑃 𝑌𝑒=1 = 1 = 𝑃 𝑌𝑒=0 = 1



MEASURES OF ASSOCIATION

• RISK DIFFERENCE

P 𝑌 = 1 𝐸 = 1 − P 𝑌 = 1 𝐸 = 0

• RISK RATIO

P 𝑌 = 1 𝐸 = 1

P 𝑌 = 1 𝐸 = 0

• ODDS RATIO

P 𝑌 = 1 𝐸 = 1 /P 𝑌 = 0 𝐸 = 1

P 𝑌 = 1 𝐸 = 0 /P 𝑌 = 0 𝐸 = 0
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➔ value of 0 ≙ Y independent of E

➔ value of 1 ≙ Y independent of E



MEASURES OF CAUSAL EFFECTS

• CAUSAL RISK DIFFERENCE

𝑃 𝑌𝑒=1 = 1 − 𝑃 𝑌𝑒=0 = 1

• CAUSAL RISK RATIO

𝑃 𝑌𝑒=1 = 1

𝑃 𝑌𝑒=0 = 1

• CAUSAL ODDS RATIO

𝑃 𝑌𝑒=1 = 1 /𝑃 𝑌𝑒=1 = 0

𝑃 𝑌𝑒=0 = 1 /𝑃 𝑌𝑒=0 = 0
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➔ value of 0 ≙  no causal effect

➔ value of 1 ≙  no causal effect



IDEAL RANDOMIZED CONTROLLED TRIAL

E=1E=0

P 𝑌𝑒=0 = 1 P(𝑌𝑒=1 = 1) P 𝑌 = 1 𝐸 = 0
= P(𝑌𝑒=0 = 1)

P 𝑌 = 1 𝐸 = 1
= P(𝑌𝑒=1 = 1)

2 exchangeable sub-populations

=

Exchangeability:

Probability of 𝑌|𝐸 independent of 

exposure assignment 

E=0 E=1 E=1 E=0

exchangeable settings



OBSERVATIONAL COHORT STUDIES

Typically: Association ≠ Causation 

Reason: exposure not random, but dependent on other variables C

(e.g. age, medical history)

➔Absence of exchangeability between exposure subgroups

➔Presence of confounding 

➔Complex causal pathways between variables (incl. exposure) and outcome



CONDITIONS FOR CAUSAL INFERENCE (1/2) 

• EXCHANGEABILITY

Outcome 𝑌|𝐸 independent of exposure assignment to population subgroups

• POSITIVITY

P(E=e)>0, for all e

• CONSISTENCY

Well-defined controllable types of exposure

➔ Fulfilled in “ideal” marginally randomized controlled trials
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CONDITIONS FOR CAUSAL INFERENCE (2/2)

Conditionally randomized 

controlled trial
(stratification, e.g. by gender G, before 

randomization )

Observational cohort study
(confounding due to a set of variables C, 

e.g. gender, co-medication,…, with a 

causal effect on exposure and outcome)

Conditional 

exchangeability

Exchangeable exposure groups 

within each stratum of G

Exchangeable exposure groups 

within each stratum of C

Conditional 

positivity

No empty exposure subgroups 

across all strata of G

P(E=e|G=g)>0, for all e, g

No empty exposure subgroups 

across all strata of C

P(E=e|C=c)>0, for all e, c

Consistency Well defined interventions (e.g. 

drug and placebo)

Well defined interventions (e.g. 

oral and intravenous treatment)

13



CONDITIONS FOR CAUSAL INFERENCE (2/2)

Conditionally randomized 

controlled trial
(stratification, e.g. by gender G, before 

randomization )

Observational cohort study
(confounding due to a set of variables C, 

e.g. gender, co-medication,…, with a 

causal effect on exposure and outcome)

Conditional 

exchangeability

Exchangeable exposure groups 

within each stratum of G

Exchangeable exposure groups 

within each stratum of C

Conditional 

positivity

No empty exposure subgroups 

across all strata of G

P(E=e|G=g)>0, for all e, g

No empty exposure subgroups 

across all strata of C

P(E=e|C=c)>0, for all e, c

Consistency Well defined interventions (e.g. 

drug and placebo)

Well defined interventions (e.g. 

oral and intravenous treatment)
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CONDITIONS FOR CAUSAL INFERENCE (2/2)

Conditionally randomized 

controlled trial
(stratification, e.g. by gender G, before 

randomization )

Observational cohort study
(confounding due to a set of variables C, 

e.g. gender, co-medication,…, with a 

causal effect on exposure and outcome)

Conditional 

exchangeability

Exchangeable exposure groups 

within each stratum of G

Exchangeable exposure groups 

within each stratum of C

Conditional 

positivity

No empty exposure subgroups 

across all strata of G

P(E=e|G=g)>0, for all e, g

No empty exposure subgroups 

across all strata of C

P(E=e|C=c)>0, for all e, c

Consistency Well defined interventions (e.g. 

drug and placebo)

Well defined interventions (e.g. 

oral and intravenous treatment)
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DIRECTED ACYCLIC GRAPHS

(DAGs)
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WHY?

• CONCISE GRAPHICAL VISUALIZATION OF (COMPLEX) CAUSAL ASSUMPTIONS IN 

OBSERVATIONAL STUDIES

• VISUAL COMPARISON BETWEEN DIFFERENT CAUSAL APPROACHES TO THE SAME 

PROBLEM

• SUPPORTING TOOL FOR IDENTIFICATION OF POTENTIAL SOURCES OF 

CONFOUNDING AND BIAS

• SUPPORTING TOOL FOR METHODS CHOICE AND RESULTS INTERPRETATION

Not a pre-requisite, but often very helpful for causal inference



BIRTH WEIGHT PARADOX (1/2)

• In the general population:   low birthweight → higher infant mortality

• Paradox finding: lower mortality of babies with low birthweight among smoking mothers than 

among non-smoking mothers 

• Does smoking have a beneficial effect on child mortality?

• Of course not!

Allen Wilcox (2001): On the importance – and the unimportance – of birthweight, International Journal of 

Epidemiology, Vol. 30: 1233-1241



BIRTH WEIGHT PARADOX (2/2)

CLARIFICATION:

Rate of babies with low birthweight higher among smoking than among non-smoking mothers 

➔ in general higher mortality in babies of smoking mothers

EXPLANATION OF THE PARADOX FINDING:

• Equal “baseline” risk of low birthweight in both groups of mothers

• BUT: birth weight distribution among babies of smoking mothers shifted toward the lower end

➔ low birthweight in some of the otherwise healthy babies 

➔ lower mortality among the otherwise healthy babies than among babies

with smoking-independent severe medical conditions or unfavorable genetic disposition



SIMPSON’S PARADOX (1/2)

• Exposure E harmful in female patients

• Exposure E harmful in male patients

• PARADOX FINDING: 

Exposure E not harmful in the overall population?

Females Y=1 Y=0 Total Recovery rate

E=1 2 8 10 20%

E=0 9 21 20 30%

Total 11 29 40

Males Y=1 Y=0 Total Recovery rate

E=1 18 12 30 60%

E=0 7 3 10 70%

Total 25 15 40

All Y=1 Y=0 Total Recovery rate

E=1 20 20 40 50%

E=0 16 24 40 40%

Total 36 24 80

E=1: exposed to treatment;   E=0: not exposed

Y=1: recovered;   Y=0: not recovered                    

Edward H. Simpson (1951): The interpretation of Interaction in Contingency Tables, Journal of the Royal 

Statistical Society, Series B, Vol 13 (2), 238-241.



SIMPSON’S PARADOX (2/2)

EXPLANATION OF THE PARADOX FINDING:

• Male and female populations of equal size, BUT

• Higher exposure rate among males than among females

• In general, higher recovery rate in males than in females

→ Important causal considerations 

→ Combined view leading to misinterpretations



CHARACTERISTICS OF A DAG

• Graph:     nodes/variables      𝑁1 𝑁2 𝑁3 𝑁4

edges                       𝑁1 𝑁2 𝑁3 𝑁4

• Directed Graph:                      𝑁1 𝑁2 𝑁3 𝑁4
(from cause      outcome)

• Directed Acyclic Graph: 𝑁1 𝑁2 𝑁3 𝑁4

to



GENERAL NOTE ON INTERPRETATION

NO EDGE ≙ NO DIRECT CAUSAL EFFECT (SHARP NULL ASSUMPTION)

EDGE ≙ EXPECTED CAUSAL EFFECT (OF ANY STRENGTH)

Absence-oriented approach:

• More edges ➔ less causal assumptions

• Less edges ➔ more (sharp!) causal assumptions 𝑁1 𝑁2 𝑁3 𝑁4

𝑁1 𝑁2 𝑁3 𝑁4



COMPONENTS OF A DAG

PATH: Sequence of edges connecting two nodes

POSSIBLE RELATIONSHIPS BETWEEN NODE 𝑁 AND OTHER NODES:

Descendant of 𝑁: a node directly or indirectly caused by 𝑁

Child of 𝑁: a node directly caused by 𝑁

Ancestor of 𝑁 : a node directly or indirectly causing 𝑁

Parent of 𝑁: a node directly causing 𝑁

COLLIDER (L):

L
𝑁1

𝑁2



CONDITIONING ON VARIABLES (1/2)

BLOCKED PATH:   

Path with

• a non-collider 𝑁𝑖 being conditioned on OR

• a collider L not being conditioned on and not having any descendent Y being conditioned on

EXAMPLES OF BLOCKED PATHS (CONDITIONING ≙ ):

𝑁4

𝑁2

𝑁3

L
𝑁1

𝑁2

Y
𝑁1

𝑁5



CONDITIONING ON VARIABLES (2/2)

OPEN PATH ≙ UNBLOCKED PATH: 

Path with

• no non-collider 𝑁𝑖 being conditioned on AND

• a collider L being conditioned on or having any descendent Y being conditioned on

EXAMPLES OF OPEN PATHS: 

𝑁4

𝑁2

𝑁3

L
𝑁1

𝑁2

Y

𝑁1

𝑁5

L
𝑁1

𝑁2



SELECTION BIAS

INDUCED BY

OPENING A PATH BY CONDITIONING ON A COLLIDER OR ONE OF ITS DESCENDANTS 

EXAMPLE:  Birth Weight Paradox 

S: smoking status                                                                           L: birthweight

N: smoking-independent medical or genetic factors                        Y: mortality

L
𝑆

𝑁
Y L

𝑆

𝑁
Y

View on general population Selection bias

Allen Wilcox (2006): The Perils of Birth Weight – A Lesson from Directed Acyclic Graphs, American 

Journal of Epidemiology, Vol. 164 (11): 1121 - 1123



DIRECTED SEPARATION (D-SEPARATION)

D-SEPARATION BETWEEN TWO VARIABLES       BLOCKAGES OF ALL PATHS BETWEEN THEM≙

L
𝑁1

𝑁2

Y

𝑁3

• D-separation between 𝑁1 and Y
• D-separation between 𝑁2 and Y



DIRECTED CONNECTION (D-CONNECTION)

D-CONNECTION OF TWO VARIABLES       AT LEAST ONE OPEN PATH BETWEEN THEM≙

L
𝑁1

𝑁2

Y

𝑁3

• D-separation between 𝑁1 and Y
• D-connection of 𝑁2 and Y

L
𝑁1

𝑁2

Y

𝑁3

• D-connection of 𝑁1 and Y
• D-connection of 𝑁2 and Y



CONFOUNDING

EXAMPLE: Simpson’s Paradox:   

E: exposure                   Y: recovery                  G : gender

E Y
ignoring G

E Y

accounting for G as a common 

cause of E and Y

➔ ACCOUNTING FOR CONFOUNDING

𝐺

E Y

𝐺

sharp null assumption between G and E



CAUSAL DAGs FOR CAUSAL INFERENCE

ASSUMPTIONS:

• All common causes captured by the graph

• No unmeasured confounding

➔ Very strong and critical assumptions

➔ Prerequisites for accurate and reliable causal inference 
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THANK YOU.
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BACK-UP SLIDES.
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WHICH VARIABLES ARE D-SEPARATED/CONNECTED?

𝑁3

𝑁4

𝑁2

YL

𝑁1

𝑁5

𝑁6


