

OUTLINE

CAUSAL INFERENCE

Background

Association versus causation

Key conditions for causal inference

2. DIRECTED ACYCLIC GRAPHS

Background

Paradoxes

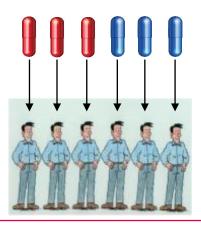
Definitions and illustrations

CAUSAL INFERENCE

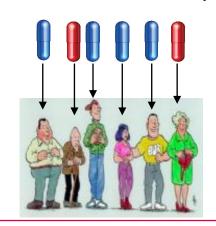
WHY?

TO BE ABLE TO ESTIMATE THE CAUSAL EFFECT OF A VARIABLE (E.G. AN EXPOSURE) ON AN OUTCOME IN SPECIFIC STUDY SETTINGS

randomized controlled trial



observational cohort study



NOTATION

Y: outcome (here: binary 0/1)

E: observed exposure (here: binary 0/1)

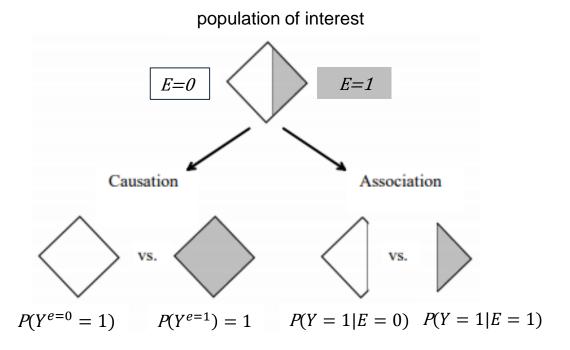
e: hypothetical exposure (here: binary 0/1)

P(Y=1/E=1): probability of Y=1 in a population exposed to E=1

 $P(Y^{e=1} = 1)$: probability of outcome y=1, would exposure e=1 be chosen

 $\rightarrow Y^{e=0}, Y^{e=1}$: potential/counterfactual outcomes

ASSOCIATION VERSUS CAUSATION (1/2)



ASSOCIATION VERSUS CAUSATION (2/2)

ASSOCIATION:

$$P(Y=1|E=1) \neq P(Y=1|E=0)$$

for two disjoint exposure subgroups

CAUSATION:

$$P(Y^{e=1} = 1) \neq P(Y^{e=0} = 1)$$

based on a counterfactual view on the entire population

SHARP CAUSAL NULL HYPOTHESIS:

$$P(Y^{e=1} = 1) = P(Y^{e=0} = 1)$$

MEASURES OF ASSOCIATION

RISK DIFFERENCE

$$P(Y = 1|E = 1) - P(Y = 1|E = 0)$$
 \rightarrow value of $0 \triangleq Y$ independent of E

RISK RATIO

$$\frac{P(Y = 1|E = 1)}{P(Y = 1|E = 0)}$$

ODDS RATIO

$$\frac{P(Y = 1|E = 1)/P(Y = 0|E = 1)}{P(Y = 1|E = 0)/P(Y = 0|E = 0)}$$

 \rightarrow value of 1 \triangleq *Y* independent of *E*

MEASURES OF CAUSAL EFFECTS

CAUSAL RISK DIFFERENCE

$$P(Y^{e=1} = 1) - P(Y^{e=0} = 1)$$

 $P(Y^{e=1}=1) - P(Y^{e=0}=1)$ \rightarrow value of $0 \triangleq$ no causal effect

CAUSAL RISK RATIO

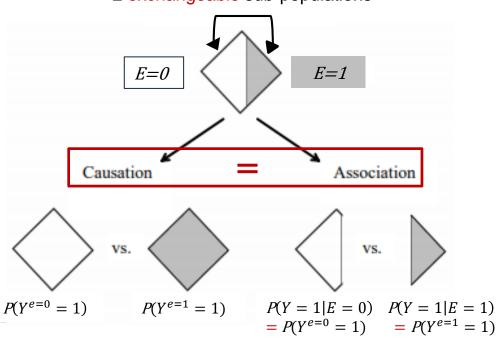
$$\frac{P(Y^{e=1} = 1)}{P(Y^{e=0} = 1)}$$

CAUSAL ODDS RATIO

$$\frac{P(Y^{e=1}=1)/P(Y^{e=1}=0)}{P(Y^{e=0}=1)/P(Y^{e=0}=0)}$$

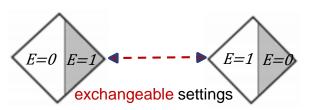
IDEAL RANDOMIZED CONTROLLED TRIAL

2 exchangeable sub-populations



Exchangeability:

Probability of Y|E independent of exposure assignment



OBSERVATIONAL COHORT STUDIES

Typically: Association ≠ Causation

Reason: exposure not random, but dependent on other variables C (e.g. age, medical history)

- → Absence of exchangeability between exposure subgroups
- → Presence of confounding
- → Complex causal pathways between variables (incl. exposure) and outcome

CONDITIONS FOR CAUSAL INFERENCE (1/2)

EXCHANGEABILITY

Outcome Y|E independent of exposure assignment to population subgroups

POSITIVITY

$$P(E=e)>0$$
, for all e

CONSISTENCY

Well-defined controllable types of exposure

→ Fulfilled in "ideal" marginally randomized controlled trials

CONDITIONS FOR CAUSAL INFERENCE (2/2)

	Conditionally randomized controlled trial (stratification, e.g. by gender <i>G</i> , before randomization)	Observational cohort study (confounding due to a set of variables <i>C</i> , e.g. gender, co-medication,, with a causal effect on exposure and outcome)	
Conditional exchangeability	Exchangeable exposure groups within each stratum of <i>G</i>	Exchangeable exposure groups within each stratum of <i>C</i>	
Conditional positivity	No empty exposure subgroups across all strata of G $P(E=e/G=g)>0$, for all e, g	No empty exposure subgroups across all strata of C P(E=e/C=c)>0, for all e, c	
Consistency	Well defined interventions (e.g. drug and placebo)	Well defined interventions (e.g. oral and intravenous treatment)	

CONDITIONS FOR CAUSAL INFERENCE (2/2)

	Conditionally randomized controlled trial (stratification, e.g. by gender <i>G</i> , before randomization)	Observational cohort study (confounding due to a set of variables <i>C</i> , e.g. gender, co-medication,, with a causal effect on exposure and outcome)
Conditional exchangeability	Exchangeable exposure groups within each stratum of <i>G</i>	Exchangeable exposure groups within each stratum of C
Conditional positivity	No empty exposure subgroups across all strata of G $P(E=e/G=g)>0$, for all e, g	No empty exposure subgroups across all strata of C $P(E=e C=c)>0, \text{ for all e, c}$
Consistency	Well defined interventions (e.g. drug and placebo)	Well defined interventions (e.g. oral and intravenous treatment)

CONDITIONS FOR CAUSAL INFERENCE (2/2)

	Conditionally randomized controlled trial (stratification, e.g. by gender <i>G</i> , before randomization)	Observational cohort study (confounding due to a set of variables <i>C</i> , e.g. gender, co-medication,, with a causal effect on exposure and outcome)	
Conditional exchangeability	Exchangeable exposure groups within each stratum of <i>G</i>	Exchangeable exposure groups within each stratum of <i>C</i>	
Conditional positivity	No empty exposure subgroups across all strata of G $P(E=e/G=g)>0$, for all e, g	No empty exposure subgroups across all strata of C $P(E=e/C=c)>0, \text{ for all e, c}$	
Consistency	Well defined interventions (e.g. drug and placebo)	Well defined interventions (e.g. oral and intravenous treatment)	

DIRECTED ACYCLIC GRAPHS (DAGs)

WHY?

- CONCISE GRAPHICAL VISUALIZATION OF (COMPLEX) CAUSAL ASSUMPTIONS IN OBSERVATIONAL STUDIES
- VISUAL COMPARISON BETWEEN DIFFERENT CAUSAL APPROACHES TO THE SAME PROBLEM
- SUPPORTING TOOL FOR IDENTIFICATION OF POTENTIAL SOURCES OF CONFOUNDING AND BIAS
- SUPPORTING TOOL FOR METHODS CHOICE AND RESULTS INTERPRETATION
- Not a pre-requisite, but often very helpful for causal inference

BIRTH WEIGHT PARADOX (1/2)

- In the general population: low birthweight → higher infant mortality
- Paradox finding: lower mortality of babies with low birthweight among smoking mothers than among non-smoking mothers
- Does smoking have a beneficial effect on child mortality?
- Of course not!

BIRTH WEIGHT PARADOX (2/2)

CLARIFICATION:

Rate of babies with low birthweight higher among smoking than among non-smoking mothers

→ in general higher mortality in babies of smoking mothers

EXPLANATION OF THE PARADOX FINDING:

- Equal "baseline" risk of low birthweight in both groups of mothers
- BUT: birth weight distribution among babies of smoking mothers shifted toward the lower end
 - → low birthweight in some of the otherwise healthy babies
 - → lower mortality among the otherwise healthy babies than among babies with smoking-independent severe medical conditions or unfavorable genetic disposition

SIMPSON'S PARADOX (1/2)

Y=1: recovered; Y=0: not recovered

Exposure *E* harmful in female patients

Exposure *E* harmful in male patients

PARADOX FINDING:

Exposure *E* not harmful in the overall population?

Females	Y=1	Y=0	Total	Recovery rate
E=1	2	8	10	20%
E=0	9	21	20	30%
Total	11	29	40	

E=1: exposed to treatment; E=0: not exposed

Males	Y=1	Y=0	Total	Recovery rate
E=1	18	12	30	60%
E=0	7	3	10	70%
Total	25	15	40	

All	Y=1	Y=0	Total	Recovery rate
E=1	20	20	40	50%
E=0	16	24	40	40%
Total	36	24	80	

SIMPSON'S PARADOX (2/2)

EXPLANATION OF THE PARADOX FINDING:

- Male and female populations of equal size, BUT
- Higher exposure rate among males than among females
- In general, higher recovery rate in males than in females

- → Important causal considerations
- → Combined view leading to misinterpretations

CHARACTERISTICS OF A DAG

• Graph: nodes/variables N_1 N_2 N_3 N_4 edges $N_1 - N_2 - N_3$ N_4

• <u>Directed Graph:</u> (from cause ^{to} outcome)

 $N_1 \longrightarrow N_2 \longleftarrow N_3 \qquad N_4$

• Directed Acyclic Graph:

GENERAL NOTE ON INTERPRETATION

NO EDGE

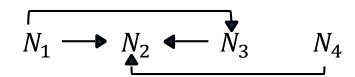
NO DIRECT CAUSAL EFFECT (SHARP NULL ASSUMPTION)

EDGE

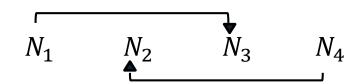
EXPECTED CAUSAL EFFECT (OF ANY STRENGTH)

Absence-oriented approach:

More edges → less causal assumptions



Less edges → more (sharp!) causal assumptions



COMPONENTS OF A DAG

PATH: Sequence of edges connecting two nodes

POSSIBLE RELATIONSHIPS BETWEEN NODE N AND OTHER NODES:

Descendant of N: a node directly or indirectly caused by N

Child of *N*: a node directly caused by *N*

Ancestor of *N*: a node directly or indirectly causing *N*

Parent of N: a node directly causing N

COLLIDER (L):

$$N_1 \longrightarrow L$$
 $N_2 \longrightarrow L$

CONDITIONING ON VARIABLES (1/2)

BLOCKED PATH:

Path with

- a non-collider N_i being conditioned on OR
- a collider L not being conditioned on and not having any descendent Y being conditioned on

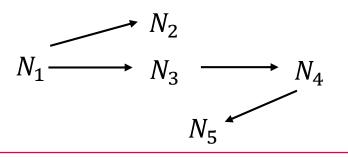
EXAMPLES OF BLOCKED PATHS (CONDITIONING △):

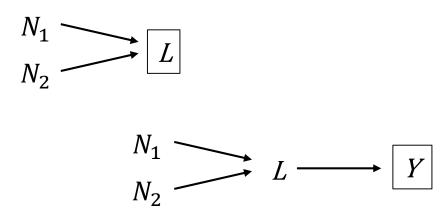
CONDITIONING ON VARIABLES (2/2)

Path with

- no non-collider N_i being conditioned on AND
- a collider L being conditioned on or having any descendent Y being conditioned on

EXAMPLES OF OPEN PATHS:





SELECTION BIAS

INDUCED BY

OPENING A PATH BY CONDITIONING ON A COLLIDER OR ONE OF ITS DESCENDANTS.

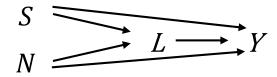
EXAMPLE: Birth Weight Paradox

S: smoking status

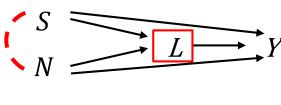
N: smoking-independent medical or genetic factors

L: birthweight

Y: mortality



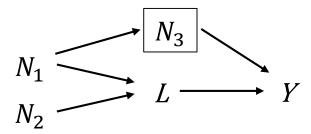
View on general population



DIRECTED SEPARATION (D-SEPARATION)

D-SEPARATION BETWEEN TWO VARIABLES

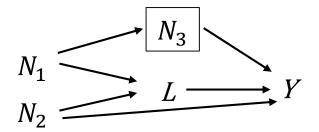
BLOCKAGES OF ALL PATHS BETWEEN THEM



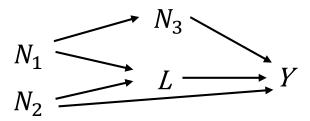
- D-separation between N_1 and Y
- D-separation between N₂ and Y

DIRECTED CONNECTION (D-CONNECTION)

D-CONNECTION OF TWO VARIABLES \triangleq AT LEAST ONE OPEN PATH BETWEEN THEM



- D-separation between N_1 and Y
- D-connection of N₂ and Y



- D-connection of N₁ and Y
- D-connection of N₂ and Y

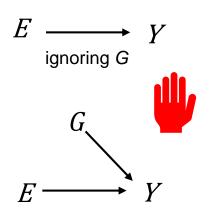
CONFOUNDING

EXAMPLE: Simpson's Paradox:

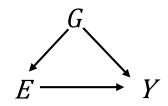
E: exposure

Y: recovery

G: gender



sharp null assumption between G and E



accounting for *G* as a common cause of *E* and *Y*

→ ACCOUNTING FOR CONFOUNDING

CAUSAL DAGS FOR CAUSAL INFERENCE

ASSUMPTIONS:

- All common causes captured by the graph
- No unmeasured confounding
 - → Very strong and critical assumptions
 - → Prerequisites for accurate and reliable causal inference

SOME REFERENCES

- S. Greenland (1990). "Randomization, statistics, and causal inference." Epidemiology: 421-429
- J.M. Robins (1999): "Association, causation, and marginal structural models." Synthese 121.1: 151-179.
- S. Greenland, J. Pearl, and J.M. Robins (1999). "Causal diagrams for epidemiologic research." *Epidemiology* 10: 37-48.
- M.A. Hernán, and J.M. Robins (2006). "Estimating causal effects from epidemiological data." *Journal of epidemiology & community health* 60.7: 578-586.
- J. Pearl (2009). "Causal inference in statistics: An overview." Statistics surveys 3: 96-146.
- G.W. Imbens, and D.B. Rubin (2015). Causal inference in statistics, social, and biomedical sciences. Cambridge University Press.

THANK YOU.

BACK-UP SLIDES.

WHICH VARIABLES ARE D-SEPARATED/CONNECTED?

